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Adsorption of polymer chains by disordered traps
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Abstract. We study the adsorption cross-over of ideal polymer chains in an environment of disordered
traps. Starting from the assumption of an optimal cluster size of traps (optimal fluctuation method)
we derive a general scaling form of the free energy function for arbitrary spatial dimensions. For small
concentrations of traps we find a cross-over from localized (adsorbed) behavior to delocalized behavior
depending on the chain’s length and on the depth of the traps; this is connected with the non-monotonic
behavior of the chain’s extension. In terms of the free energy of the chain this cross-over resembles a first
order transition scenario, the chain gets localized at many traps at once.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion –
36.20.-r Macromolecules and polymer molecules – 64.70.-p Specific phase transitions

1 Introduction

The behavior of polymer chains in disordered environ-
ments has received much attention from the theoretical
point of view, see for instance [1–6]. The general result
here is the localization or collapse of the chain induced by
the disorder which has dramatic consequences also for the
dynamic behavior [5]. On the other hand there are many
practical examples such as polymers in lamellar structures
(lipid layers, block copolymers), polymers adsorbed onto
chemically disordered surfaces and polymers embedded
in porous media or networks which correspond to one,
two and three-dimensional realizations of quenched disor-
dered environments. Moreover, there is a close analogy be-
tween polymers in disordered environments and nonlinear
growth models of KPZ-type [7] via the Cole-Hopf trans-
formation, see [2], as well as the apparent analogy between
the d-dimensional polymer and the d + 1-dimensional di-
rected polymer problem. Finally, it is well known, that the
statistics of ideal polymer chains in an external potential
has close similarities with the dynamics of a Schrödinger
particle. Therefore methods developed for the Schrödinger
equation [8–10] can be applied to the polymer problem as
well [6,11,12].

Returning to the practical situation of polymer chains
in some structured environment we should state that dis-
order can never be avoided completely. It is only the ques-
tion of when the disorder becomes relevant to the static
and dynamical properties of the chain. This point has re-
ceived considerably less attention in the literature. How-
ever, by taking the week disorder limit as the limit of
sparse attractive defects (traps) the cross-over from un-
perturbed to localized chains is an interesting generaliza-
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tion of the adsorption cross-over of polymers at isolated
defects such as interfaces, cylinders or spheres. Moreover,
increasing the density of traps (having a finite depth) be-
yond the cross-over point will increase the size of the lo-
calized chains again. Thus the static and also the dynamic
properties display a pronounced non-monotonic behavior
around the cross-over region [12,13]. This strongly non-
linear behavior may have interesting applications such as
electrophoresis.

The effect of frozen-in structural disorder is a general
problem of statistical physics. As has been discussed by
Thirumalai [3] the replica variational approach is limited
for the problem at hand. Lifshitz [8] has argued long time
before that very rare events of connected clusters of de-
fects determine the distribution of the lowest lying energy
states in the corresponding quantum system. Thus, be-
cause of ground state dominance, these levels control the
statistics of polymer chains in the the disordered environ-
ment. The ground state dominance (G.S.D.) means here,
that a very long chain is trapped by a cluster of radius
R, i.e. it is localized within the length L ' R � lN1/2,
with l being the statistical segment length of the chain.
On the other hand the probability of finding a cluster con-
taining V ∼ Rd defects is given by P (n) ' pV , which is
an exponentially small quantity for large values of V . For
a given chain length there will be a balance between the
gain in free energy F (V,N,E) due to localization at en-
ergetically favorable clusters of traps and the probability
p(V ) to find a cluster of size V . Here E means the inter-
action energy gain per monomer in the trap. As a result
an optimal value emerges for the cluster size and hence
for the localization length L of the trapped chain. This
argument is well known and was recently applied again to
the problem of directed polymers by Nieuwenhuizen [14].
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Usually it is assumed that the ground state of the poly-
mer is simply given by the complete confinement of the
chain (or quantum state) within the volume V . Here the
depth of the traps E is a constant which can be omit-
ted in the minimization procedure. However, depending
on E, the chain will also extend into the outer space with
a finite probability, resulting in a deviation of the chain’s
free energy function from the simple confinement behav-
ior. By taking account of the full solution for the ground
state in a spherical potential well of radius R, we predict
a cross-over value R× ∼ 1/

√
E, below which localization

of chains in optimal clusters is no more favored compared
with extended states in between the traps. For small val-
ues of E, R× can be large and the cross-over from the free
chain behavior to the trapped state is reminiscent to a first
order transition scenario, assuming R(E,N, p) (the opti-
mal cluster size) as an order parameter. Moreover, using
the exact ground state solution within the Lifshitz argu-
ment we naturally arrive at a dimensionless scaling expres-
sion for the free energy of the chain, yielding in particular
g̃ ∼ ln(1/p)/(NE1+d/2) as the universal control parame-
ter for the localization cross-over. We illustrate our results
by numerical solutions for the three cases d = 1, 2, 3.

2 Scaling form of the free energy for a single
chain in a field of disordered traps

We assume the most simple two component discrete model
of the disordered environment providing all the basic
features but stripped from unnecessary details. This cor-
responds basically to the model of saturated disorder as
introduced in reference [2]. Here a unit in space of size ξ is
either “white” or “black”, where the black sites correspond
to traps. If a monomer is located there it gains an energy
E. The probability for a trap is given by p. In the follow-
ing we will be interested in clusters of connected traps.
Here for d > 1 very different “lattice animals” appear
with irregular shapes. However, for simplicity we assume
a spherical shape for V � 1 only, i.e. V ∼ Rd, see [4,10].
Note that within this model the depth of a cluster is given
by the depth of the traps.

The key quantity of interest is the free energy of an
ideal chain in disordered media. Generally, one would have
to calculate the partition function Z(N,E, {rk}) for a
given set of traps located at random positions rk in or-
der to obtain the free energy F = − lnZ in the limit of
infinite volume with fixed density of defects p. Here and
in the following we consider all energies in units of kT .
Since the free energy is a self-averaging quantity, an
a posteriori average over the disorder can be applied
which in turn might be approached by the replica
formalism [1,3,4].

However, there is a much more intuitive picture given
by the optimal fluctuation method as introduced by
Lifshitz [8] which we will apply here. The idea is that
the chain prefers regions in space containing many closely
connected traps forming a cluster of size V ∼ Rd. The free
energy is then controlled by the ground state of the

cluster-chain interaction for sufficiently long chains of
length N (number of segments)1. We denote this ground
state solution by Nλ(R,E), where the chain length ap-
pears naturally as a prefactor, λ is the ground state free
energy per monomer. According to this idea the free en-
ergy per monomer is given by:

f =
F

N
= λ(E,R) + V

ln(1/p)

N
= λ(E,R) +Rdg, (1)

where we have introduced the parameter g as:

g =
ln(1/p)

N
V (1), (2)

with V (1) as the volume of the unit sphere in the given
spatial units. The basic assumption is that the chain is
localized by single clusters of radius R. Note that R is not
equivalent to the localization or adsorption length of the
chain L which corresponds to the extension of the wave
function in the original Lifshitz argument. As we will see
below, there is a unique relation between L and R, so that
we keep R as the characteristic parameter. The second
term of equation (1) is the logarithm of the probability of
finding a cluster of size V , p(V ) ∼ pV . Its appearance in
the free energy can also be understood from the following
argument: The free energy of the chain trapped by the
cluster must be compared to the free energy of transla-
tion between the clusters Ftr = − lnV , where V is the
average free volume per cluster given by 1/p(V ). Hence,
equation (1) displays simply the balance between the
translational free energy of the free chain and the free en-
ergy of trapping. Note the interesting correspondence be-
tween the picture of one cluster (defect) and many chains,
i.e. a finite density c [15] and the situation at hand. We
now minimize the free energy with respect to R which
yields the optimal localized state dominating the free en-
ergy:

∂f

∂R
= 0→ R∗. (3)

Within the approach of spherical clusters of traps we
can use the exact ground state solution of the polymer
chain. This can be written as:

λ(E,R) = −Ek̃2(RE1/2), (4)

with

k̃ = k/
√
E. (5)

The ground state solution in equation (4) corre-
sponds completely the solution of the time independent
Schrödinger equation in a potential well [16]. The scal-
ing form of equation (4) is a direct consequence of the
structure of the Schrödinger equation. For convenience we
provided the derivation in Appendix A. The symbol k cor-
responds to the inverse localization length L of the chain

1 For d > 2 a minimum value of E for a given cluster size
must exist as will be discussed later.
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Fig. 1. Depending on the width of the cluster of traps two
cases can be distinguished: (a) confinement of the chains and
(b) localization by forming large loops outside the trap.

bounded by the cluster: k ∼ 1/L. Inserting the formal
solution (4) into the free energy function of equation (1)
we get:

f = −Ek̃2(R̃) +Rdg, (6)

where we have also introduced R̃ according to:

R̃ =
√
ER. (7)

Using further

f̃ = f/E (8)

g̃ = g/E1+ d
2 (9)

we obtain finally:

f̃ = −k̃2(R̃) + R̃dg̃. (10)

This is the general scaling form of the Lifshitz free energy,
where the three parameters E, g and R are expressed by

only two scaling variables: g̃ and R̃.
In the most simple approach one considers the chain

to be completely confined in the cluster, see for instance
[2,14], i.e. one neglects any overflow into the outer space.
Then we have L = R, as sketched in Figure 1a and the
corresponding confinement solution for λ is given by:

λconf = α
1

R2
−E with: l2 = 2d. (11)

The numerical constant α depends on d and on the form of
the cluster. To avoid unnecessary prefactors we consider
l/
√

2d as the unit length. Notice that the depth of the
cluster E appears only as a constant. We will see below
that this solution cannot describe the interesting cross-
over scenario for small values of p but corresponds to the
limiting case of large cluster sizes.

We now consider the properties of f̃ using the solution

k̃(R̃) for d = 1, 2 and 3. For d > 2 there is no solution

for R̃ < R̃c(d). In the particular case of d = 3 we ob-

tain R̃c(3) = π/2. To generalize the discussion one can set

R̃c(1) = R̃c(2) = 0. In Figure 2 the numerical solution of

k̃(R̃) is plotted. The function k̃(R̃) increases monotonous
and we can distinguish two different regions of behavior:

For small values of R̃ the localized chains extend mostly

into the outer space, see Figure 1b. The behavior of k̃
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Fig. 2. Full solution of the Schrödinger equation as given by
equation (A.11) is displayed.
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Fig. 3. The control parameter g̃ as a function of the cluster
radius is plotted for the condition f = 0.

near the edge ∆ = R̃ − R̃c � 1 is usually given by
a power law [17]. Both for d = 1 and for d = 3 we obtain a

simple linear relation: k̃ = ∆. The case d = 2 is marginal.

The critical value R̃c(2) is still zero but k̃ becomes expo-
nentially small in the limit ∆ → 0. Instead of a power

law we get: k̃ = 1/∆ exp{−2/∆2}. On the other hand, for

large values of R̃ the chain is confined, see Figure 1a, and
equation (11) holds true. The free energy per monomer is

bounded by the depth of the traps: k̃ saturates at unity.

The saturation can be quantified by κ =
√

1− k̃2. One

gets κ =
√
α/R̃ with:

√
α given by π/2, 2.404... (first zero

of J0(x)) and π for d = 1, 2 and 3 respectively.
As a consequence of this behavior we consider a small

value value of g. The second term in equation (10) domi-

nates for large enough R, since k̃ saturates. The effective
free energy therefore turns up for large values of R. For
small values of R, on the other hand, the first term of

equation (10) dominates, hence f̃ becomes negative, pro-

vided g is small enough. As a consequence f̃ has at least

one zero point. Decreasing R further, also k̃ is decreasing

and f̃ approaches zero again.
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The zero points of f̃ can now be represented as a func-

tional dependence g̃(R̃):

g̃ = k̃2(R̃)/R̃d. (12)

The result is plotted in Figure 3. For d ≤ 2 and sufficiently

low values of g̃ there exist always two solutions of f̃ = 0.

For the case d = 3 and above R̃c the picture is similar
to the lower dimensional cases. Both solution enclose a
negative part of the free energy, which must be a mini-
mum and corresponds to the optimal localization value of

R̃∗. Formally, we can define the optimal localization as a
stationary point for the Lifshitz free energy:

∂

∂R̃
f̃ = 0 (13)

∂2

∂R̃2
f̃ > 0. (14)

However, equation (14) is not sufficient for a globally sta-
ble solution. A freely moving chain corresponds to f = 0
in our representation. This means, that a local minimum
according to equations (13, 14) might be only meta-stable.

Thus, the stationary point of f̃ represents the stable
solution only, if f(R∗) < 0. Hence we have to replace
equation (14) by:

f̃ ≤ 0, (15)

which means, that the optimal solution according to equa-
tion (13) must be located between the two solutions of
equation (12) or, in the case of a missing lower solution
(d = 3), below the maximum of g̃, given by equation (12).
Considering Figure 3, this means that a stable localized

situations can only appear below the graph g̃(R̃). An im-
portant consequence can be read off directly from Fig-
ure 3: there exists a maximum value g× (connected with
the finite diameter of the cluster R×) above which the lo-
calized solution in not stable. Decreasing g from above,
localization sets in with a finite size of the cluster, i.e. for
several traps at once. Depending on E, this number can
be large. While for d = 1 this behavior is most pronounced
it is generally similar for higher dimensions.

To conclude this section the scaled free energy at the

threshold value f̃(R̃, g̃×) is displayed in Figure 4 for d =
1, 2 and 3.

3 The cross-over scenario

As becomes obvious from the above results the Lifshitz
free energy of polymers in a field of disordered traps shows
properties which are characteristic for a first order tran-
sition scenario. We illustrate this for the case d = 1 in
Figure 5. Here the scaled free energy f̃ is again plotted

against R̃ for three different values of g̃. For simplicity we
introduce the distance from the “transition point”:

∆g = (g̃ − g̃×)/g̃×. (16)
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Fig. 4. The free energy vs. cluster radius (scaled units) is
plotted at the threshold value of the control parameter g×.
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Fig. 5. The free energy vs. cluster radius (scaled units) for
d = 1 is displayed for three values of the control parameter at,
below and above threshold value g×. The symbol ∆g is defined
in equation (16).

The upper curve corresponds to ∆g = 0.2. This exempli-
fies the meta-stable solution for the optimal localization
problem. Note that at this point the confinement solution
according to equation (11) would still yield a localized be-
havior of the chain. For the middle curve, ∆g = 0, the
minimum of f is just at f = 0, i.e. the localized states are
thermodynamically comparable to the free states. Even-
tually, for ∆g = −0.2 the minimum is well below the free
energy level of the free chain, the chain is localized. To
use the picture of a phase transition scenario, we indicate

the optimal value R̃∗ as an order parameter. The process
described above by lowering the control parameter g̃ is
therefore reminiscent to a first order transition where the
order parameter jumps at the transition point. However,
we should keep in mind that a real phase transition is a
thermodynamic property, i.e. is defined only in the limit
of infinite systems. The parameter g contains the chain
length N , see equation (2), hence a finite size is defined
a priori. Nevertheless, at least theoretically one can define
the limiting case of N →∞ and p→ 0 by keeping g finite.



J.-U. Sommer: Adsorption of polymer chains by disordered traps 541

From the above discussion it follows, that for finite
chains a cross-over from an almost free to a localized be-
havior takes place around g̃× which is defined by equa-
tion (13) and the condition f = 0. These two conditions

fix the two independent variables g̃ and R̃, or, geometri-
cally speaking there is a unique maximum of the function

g̃(R̃) according to equation (12) and Figure 3. Returning
to the original variables we get:

R× = cR(d)/
√
E, (17)

where the only d-dependence is contained in the constant
cR, which is of order unity, see Figure 4. The behavior
R× ∼ E−1/2 is therefore universal. For g we get by virtue
of the same argument using equation (9):

g× = cg(d)E1+ d
2 . (18)

Here the constant cg depends rather strongly on d, as can
be read off from Figure 3. Consider E and N as given
parameters, we further obtain using equation (2):

p× = exp{−c′gNE
1+ d

2 }, (19)

with c′g = cg/V (1). Because of the exponential behavior
we can clearly distinguish two regions in the parameter

space (N,E) for a fixed value p. For NE1+ d
2 > 1/c′g, p

×

is exponentially small, so that for p > p× ' 0 the chain

is localized. On the other hand for NE1+d
2 < 1/c′g, p

×

approaches unity so that for a given p < p× ' 1 delocal-
ization takes place. Thus

y = NE1+ d
2 (20)

becomes a scaling variable controlling the localization
cross-over for a given value of p.

It is interesting to compare these results with the situ-
ation where the traps form a regular array, see references
[11,18]. If p denotes again the density of traps, we get for
d = 1 the scaling variable y = NE2 [11]. Comparing this
with our result of equation (20) for d = 1, i.e. y = NE3/2,
we can draw the following conclusion: For in a given den-
sity p of defects with the attraction E the chains are eas-
ier adsorbed (in terms of the necessary chain length) in a
random environment than in a regular array; disorder in
the positions of the traps increases the tendency for chain
adsorption.

We consider now the extension of the chains as a func-
tion of p. For p � p× no localized solution for f exist.
Therefore, the polymer is basically free and its extension
is comparable to R0 = N1/2. Approaching p× the chain
gets trapped for longer times (meta-stability), so that the
average extension decreases rapidly if p is increased. At
p× the extension is given by R× depending only from the
energy per trap E, see equation (17). Eventually, for p
well above p× the confinement approach (11) holds, R∗

(which represents the optimal extension of the chain in
the confined state) increases according to:

R∗ ∼ ln(1/p)−1/(2+d). (21)

As a consequence, the chain’s extension passes through a
minimum at the cross-over point p×.

4 Discussion

We have presented a Lifshitz approach to polymer local-
ization in quenched disordered media described in terms of
randomly distributed energetic traps. Using the approach
of spherical clusters of radius R we have discussed the full
ground state solution for the free energy per monomer
λ(E,R). For small values of R, which correspond to low
densities of traps, the confinement solution is no more ap-
propriate, instead of this the chains are localized around
the traps by forming large loops. We have shown that this
regime yields an unstable behavior of the free energy in
the Lifshitz approach. The full solution shows a first order
transition scenario, where the optimal value of the local-
ization length becomes thermodynamically favored only
beyond a value R× ∼ E−1/2. One can reconsider this re-
sult using a simple hand waving argument: The optimal
Lifshitz free energy per monomer for the confinement so-
lution according to equation (1) and using equation (11)
can be written as:

f = −E + α′/(R∗)2 = −E + α′′g+ 2
d+2 , (22)

where α′ and α′′ are numerical constants. This solution
is thermodynamically stable only if f < 0. Therefore, we
obtain again: R× ∼ 1/

√
E and g× = E1+d/2, but now as

a limitation of the confinement solution.
Generally, we have shown that the free energy can be

written as a homogeneous function with respect to E, i.e.
it has a general scaling form for all values of the parame-
ters, see equations (7, 8, 9, 10). Of course, this is only true
within the Lifshitz approach, i.e. the idea of considering
the localized states only at single clusters of connected
traps. This means that the a posteriori average of the
self-averaging free energy is obtained by sampling over
a very particular subspace of the high dimensional ran-
dom parameter space. These rather improbable clusters
(for small p) give still the leading contribution to the free
energy provided there is enough time left for the system
to explore these regions. For a thorough discussion of the
dynamical problems in the one-dimensional case, see [14].

We have explicitly considered the solutions for d =
1, 2 and 3. In the three-dimensional case, there exist no
localized state below a threshold value of Rc

√
E = π/2.

However, within the Lifshitz method, this concerns the
region which is unstable from the thermodynamical point
of view, see Figure 4. Note that also for lower dimensions
d = 1, 2 a finite cluster size R× is required to localize the
polymer chain.

Crossing the threshold value by changing the parame-
ter p, we predict a non-monotonic behavior of the chain’s
extension, having a minimum around p×. For finite chain
lengths, this minimum should be shifted to somewhat
larger values of p, since there is always a finite probability
for the chain to escape from the optimal states, thus en-
larging the average extension. This behavior was already
predicted and simulated by the author for the special case
of d = 1 [12,19]. The present work shows that this is also
expected for higher dimensions. We note, that the con-
stant cg controlling the cross-over to the localized state
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is rapidly decreasing when d increases, see Figure 3, so
that for higher dimensions larger chains are necessary to
display the predicted behavior. This might be crucial if
non-spherical clusters are present either due to statistical
fluctuations of the shape itself or as a result of correlated
“crack-like” disorder. In this case the chains should prefer
the more anisotropic defect regions resulting in a tendency
to lower the effective dimension of the disorder. Therefore
corrections due to the non-spherical form of the clusters
should enhance the effects near the localization cross-over.

Finally the threshold value p× should also influence
dynamical quantities such as the diffusivity. In fact Slater
and Wu [13] as well as the present author [19] found a
pronounced minimum for the diffusivity for small values of
p. This might be of interest for electrophoresis of polymers
in disordered media.

Appendix A: Exact ground state solution

We have to find the ground state solution of the time inde-
pendent Schrödinger equation in a d-dimension spherical
potential well of depth E, which describes a single cluster
of traps. In the given units we can write this as follows:

D2
rφ(r) + (λ− U(r))φ(r) = 0, (A.1)

where φ is the ground state solution as a function of r,
i.e. the distance to the center of the well. The potential is
given by:

U(r) =

{
−E if 0 ≤ r < R,
0 if r ≥ R.

(A.2)

The operator D2
r denotes the r-dependent contribution

from the Laplace operator in d spatial dimensions. Since
we are looking for the ground state solution we can gener-
ally neglect the angle dependent part. It is most important
for the general results below, that we can introduce scaled
variables as follows:

r̃ =
√
Er (A.3)

λ̃ = −k̃2 = λ/E (A.4)

k̃ = k/
√
E. (A.5)

Using this definitions, we can write the inner and the outer
solution as follows:

D2
r̃φi + (1− k̃2)φi = 0 if 0 ≤ r < R (A.6)

D2
r̃φo − k̃

2φo = 0 if r > R. (A.7)

Using the necessary conditions: limx→0 φi(x) = const <∞
and limx→∞ φo(x) = 0 the only solutions in both regions
are given by:

φi(x) = ciC(x) (A.8)

φo(x) = coE(x). (A.9)

The letters C and E shall remind to the cosine-like and
exponential-like solutions in the inner and the outer re-
gion respectively. Their realizations in one, two and three

Table 1. Solutions of the Schrödinger equation as defined in
equations (A.8, A.9) for various spatial dimensions. The sym-
bols J0 and K0 denote the Bessel function of first and third
kind (Basset function) respectively.

d C(x) E(x)
1 cos(x) exp(−x)
2 J0(x) K0(x)
3 sin(x)/x exp(−x)/x

dimensions are shown in Table 1. As well known the state
function φ must obey the usual continuity conditions at
the interface between both regions, which results in the
following equation:

d

dR̃
ln C

(
(1− k̃2)1/2R̃

)
=

d

dR̃
ln E(k̃R̃) (A.10)

with the unique solution:

k̃ = k̃(R̃). (A.11)
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